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The application of mycorrhizal biofertilizers in agriculture has demonstrated potential for improving crop yield
and nutrition. However, their effectiveness across different tillage systems and under on-farm conditions remain
underexplored. This two-year study evaluated the effects of tillage practices and supplemental arbuscular
mycorrhizal fungi (AMF) inoculation on the yield and nutrient composition of organically grown sweet corn (Zea
mays). The experiment followed a split-plot design with two tillage practices—full tillage (FT) and reduced tillage
(RT)—and four AMF treatments: mock (control), native AMF community (NAT), Rhizophagus irregularis, and
Funneliformis mosseae. Results showed that FT significantly increased fresh and dry ear yields compared to RT.
AMF inoculation, particularly with R. irregularis, enhanced kernel phosphorus (P) and potassium (K) concen-
trations. Inoculation with R. irregularis and F. mosseae also increased kernel vitamin B6 and C levels. Tillage
influenced amino acid composition, with leucine and phenylalanine concentrations being higher in FT, while
tryptophan was greater in RT. Additionally, R. irregularis and F. mosseae inoculation increased aspartic acid and
glycine concentrations, which play a role in scavenging reactive oxygen species (ROS), suggesting a potential role
for AMF in enhancing crop stress resilience and nutritional quality. Despite these benefits, natural AMF colo-
nization across treatments may have masked the full effects of supplemental inoculation, highlighting the
complexity of evaluating AMF biofertilizers in field conditions. Overall, this study suggests that while the
presence of native AMF complicates the assessment of exogenous inoculation, AMF biofertilizers have positive
implications for enhancing nutrient density of sweet corn across tillage practices.

1. Introduction

Annually, the United States, produces 1.4 billion kilograms (kg) of
sweet corn on about 97,970 ha for fresh consumption, generating total
sales of $1 billion (USDA, 2024a). In Pennsylvania, sweet corn is the
leading vegetable crop, with about 5260 ha cultivated for fresh con-
sumption annually of which less than 1 % is grown organically (USDA,
2024a). Tillage is commonly used in organic systems for weed man-
agement (Bilalis et al., 2001) and crop residue incorporation (Sidiras
et al., 2001). However, studies have shown that frequent and intensive
tillage can increase soil erosion, reduce soil health properties (Blevins
etal., 1998; Singh et al., 2016; Zuber et al., 2015), and reduce microbial
abundance, (Kabiri et al., 2016; Xiao et al., 2019; Zhang et al., 2019),
particularly of arbuscular mycorrhizal fungi (AMF) (Balota et al., 2016;
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Bowles et al., 2017; Carrara et al., 2024; Oehl and Koch, 2018; Sale et al.,
2015), by disrupting mycelial networks and limiting mycorrhizal root
colonization in agricultural systems (Kabir, 2005a).

Arbuscular mycorrhizal fungi are obligate symbionts that form
mutualistic relationships with most plant roots in natural and agricul-
tural systems (Smith and Read, 2010). Plants allocate carbon (C) to
AMF, which in turn extend mycelial networks in the soil to enhance
water and nutrient acquisition, including phosphorus (P), nitrogen (N),
potassium (K), calcium (Ca), sulfur (S), zinc (Zn), and copper (Cu). This
symbiosis boosts plant productivity (Bowles et al., 2016; Hill et al.,
2010; van der Heijden et al., 1998) and crop quality (Noceto et al.,
2021), while AMF hyphal turnover contributes to soil aggregation and
soil organic matter (SOM) formation (Wilson et al., 2009). These func-
tions enhance agricultural productivity and plant resilience to
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environmental stresses. However, AMF effectiveness can vary among
different AMF groups and depending on host species (Powell et al.,
2009; Carrara and Heller, 2022; Carrara et al., 2023; Carrara et al.,
2024).

Soil conservation practices such as reduced and no-tillage, is
increasingly adopted for its positive impact on soil health (Kassam et al.,
2019). Studies show that such tillage helps preserve AMF populations by
minimizing soil disturbances (Sale et al., 2015; Sosa-Hernandez et al.,
2019; Ferreira et al., 2020). In organic reduced tillage systems, me-
chanical termination of cover crops using methods like cutting or roller
crimping (Kornecki et al., 2012) - help maintain soil structure, promotes
diverse microbial communities, including AMF, and enhances microbial
biomass (Wang et al., 2020; Zheng et al., 2023). Additionally, organic
amendments promotes AMF diversity and colonization, whereas syn-
thetic fertilizers often reduce it (Chen et al., 2014; Liu et al., 2015; van
der Gast et al., 2011).

Land use history and cultivation intensity significantly affect the
availability of native mycorrhizal fungi for root colonization. In
degraded or intensively tilled soil, AMF biofertilizer can supplement the
natural AMF communities and restore land. Vegetable growers can
either purchase commercial AMF products or produce their own inoc-
ulant on-farm (Douds Jr.. et al., 2012; Wertheim et al., 2014). AMF
inoculation has been shown to enhance productivity and nutrient con-
tent in vegetable crops, particularly in disturbed farming systems. For
example, Carrara and Heller (2022) reported a positive correlation be-
tween root mycorrhizal colonization and P concentration in young sweet
corn seedlings, with Rhizophagus species showing the strongest effect.
The increasing demand for organic vegetables and the shifts towards
minimal tillage to conserve soil health, has increased interest in using
AMF as a strategy to improve plant growth, yield, and nutrient quality.
However, estimating the benefits of AMF in the field remains chal-
lenging, especially in evaluating the effects on vegetable yield, root
colonization intensity, and nutrient uptake and with respect to different
tillage practices.

This study aims to evaluate the effects of tillage practices and AMF
inoculation on sweet corn yield, horticultural traits (e.g., plant dry
weight, harvest index), nutrient composition, and root colonization in
an organic system. We hypothesized that sweet corn yield would differ
between tillage practices and AMF species, and that AMF inoculation
will enhance nutrient quality.

2. Materials and methods
2.1. Study site, experimental design, and cultivation practice

The experiment was carried out at Rodale Institute, Kutztown, Berks
County, Pennsylvania, USA (40° 55’ 36" N, 75° 59’ 90" W) during 2021
and 2022 growing seasons. Soils at the site are characterized as
Clarksburg silt loam soil (super active, mesic Oxyaquic Fragiudalfs in the
USDA Taxonomy), which predominantly feature a flat terrain with
slopes ranging from 3% to 8 %. The area has a subhumid temperate
climate, with a hardiness zone classified as 6b (USDA, 2024b). The
long-term (1990-2022) average annual precipitation is 1196.3 mm,
with a mean annual temperature (MAT) of 11.3 °C (Fig. S1). During the
study period, the mean annual precipitation (MAP) was 1228.0 mm in
2021 and 1286.0 mm in 2022, and the MAT was 11.5°C and 11.0 for
2021 and 2022, respectively. Long term weather data (1990-2023) were
taken from the National Weather Service (NOAA, 2024), while the
weather data for the period under study were taken from the weather
station located at the Rodale Institute Research Farm (HOBO RX3000
Station — CELL - 4 G) (Supplementary figure: Fig. S1).

The experimental design was a randomized split plot design with
tillage treatments, i.e., full tillage (FT) and reduced tillage (RT)] as main
factor and AMF inoculation as subplot, with four replications. The plots
measured 26.0m x 3.0 m, and they were separated by 6.1 m x 9.1m
wide grass buffer strips.
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2.2. Field preparation and seeding of cover crops

Prior to the initiation of the research study, the fields were previously
cropped to a cover crop mixture of winter triticale (Triticosecale Witt-
mack) ‘Tulus’ and Austrian winter pea (Pisum sativum L. variety un-
specified, Albert Lee) at 1:1 ratio at 101 kg ha~ . The cover crop was roll-
crimped in spring and the plots were then prepared for the two-year
project by chisel plowing, disking, and harrowing before seeding a
cover crop mixture of hairy vetch (Vicia villosa) ‘Purple Bounty’ at a rate
of 33.6kgha! and cereal rye (Secale cereale L., variety unspecified,
Albert Lee) at a rate of 101 kg ha™! (details in Supplementary Table S1)
in fall of 2020 and 2021.

In spring of 2021 and 2022, cover crop biomass and soil were
sampled for chemical analysis. Soil samples were collected from a depth
of 0 — 20 cm. Details on cover crop biomass collection and nutrient
analysis are provided in Section 2.4.1. In FT plots, the cover crop was
mowed with a flail mower and then moldboard plowed. A blood meal
fertilizer (12-0-0 NPK) was applied after plowing at a rate of
1793 kg ha™! using a Frontier spreader, disked with a Krause 8100 disk
(Kuhn Manufacturing Facility, Hutchinson, KS), and then packed using
an Unverferth Perfecta harrow (Unverferth Manufacturing Company,
Inc., Kalida, OH). For the RT plots, the cover crop was roll-crimped at
anthesis to form a mulch using a 3.0m wide roller-crimper (I&J
Manufacturing, Gordonville, PA) front-attached to a tractor. Bloodmeal
was applied at the same rate but was not incorporated into the soil.

2.3. Preparation of mycorrhizal inoculum, seed inoculation, and field
transplantation

The study included four AMF treatments: two single AMF species,
one mixed species, and a mock (control) treatment. The single AMF
species accessions are Funneliformis mosseae and Rhizophagus irregularis,
which were acquired from the International Culture Collection of
Vesicular-Arbuscular Mycorrhizal Fungi (INVAM) at West Virginia
University, Morgantown, WV. The mixed species inoculum (hereafter
NAT) was propagated in November 2019 from soil sample (composite)
collected from the Vegetable Systems Trial (VST: https://rodaleinstitute.
org/science/vegetable-systems-trial/) at Rodale Institute, Kutztown,
PA.

The AMF inocula were propagated on-farm at Rodale Institute during
the 2020 and 2021 growing seasons by transplanting pre-colonized
Bahia grass (Paspalum notatum) into five-gallon grow bags (four plants
per bag) filled with a 3:1 mixture of vermiculite to sterilized compost
mixture, following the protocol of Douds et al. (2010). Inoculum for
each treatment was prepared by removing the aboveground biomass of
Bahia grass, cutting the root tissue into ~ 1 cm lengths and incorpo-
rating it into a growing media mix (Pro-Mix BX, Premier Tech,
Riviere-du-Loup, Quebec, Canada) at 1:10 dilution to achieve a spore
density of ~ 100 spores and the colonized root fragments are place in
128 square standard nursery plug cell trays (27 cm®/cell). A mock
inoculum was prepared using Bahia grass grown in autoclaved soil and
the resulting substrate was used as a negative control. This ensured that
any observed treatment effects were due to AMF rather than the addition
of the inoculum substrate, which contained a small amount of compost.
Molecular analysis using multiplex qPCR (Heller and Carrara, 2022) was
used to confirm the monospecific inoculum were free from contamina-
tion by other AMF and to identify that the NAT community inoculum
contained C. etunicatum, C. claroideum, F. mosseae, R. intraradices, and
R. irregularis.

To promote AMF spore germination and root colonization, trays
filled with inoculated media were prepared three weeks before seeding
sweet corn (Zea mays var. Coastal), in 128-cell trays. Seeding was done
in the greenhouse on June 2, 2021 and May 31, 2022, following Douds
et al., (2016). This pre-inoculation period allowed AMF to colonize the
roots of 7-day-old sweet corn seedlings. To prevent cross-contamination,
seeding trays for each treatment were placed on separate greenhouse
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benches during watering.

In the field, 14 sweet corn seedlings per AMF treatment were
transplanted by hand into four rows within the FT and RT plots on June
10, 2021, and June 9, 2022, respectively. Plants were spaced 76 cm
between rows and 45.7 cm within rows. At the time of transplanting,
seedlings were watered with 1% fish emulsion (3-4-3, Fertrell, Bain-
bridge, PA) and irrigated using drip irrigation.

2.4. Sample collection and analysis

2.4.1. Cover crop biomass

Aboveground cover crop biomass (hairy vetch: cereal rye) was
randomly sampled immediately prior to cover crop termination on May
3, 2021, and 2022 for FT plots, and May 18, 2021, and 2022 for RT plots.
Biomass was collected by cutting plants at ground level within a 0.50 m?
quadrat. Samples were placed in light cotton bags, dried in forced-air
oven at 45°C for one week, and weighed to determine dry biomass.
Dried samples were ground using a Wiley Mill (2 mm screen) before
nutrient analysis. All nutrient analyses were conducted at the Pennsyl-
vania State University Agriculture Analytical Services Laboratory (PSU
AASL) (State College, PA). Concentration of phosphorus (P), potassium
(K), calcium (Ca), magnesium (Mg), sulfur (S), manganese (Mn), iron
(Fe), copper (Cu), zinc (Zn), and boron (B) were determined by HNOg
and Hy0, digestion followed by inductively coupled plasma-optical
emission spectrometry (ICP-OES, Agilent 5900 ICP-OES, Agilent Tech-
nologies, Santa Clara, CA), following the protocol of Huang and Schulte,
(1985). Total nitrogen (N) and carbon (C) were measured via combus-
tion using a Vario Max N/C Cube Analyzer (Elementar Inc. Langensel-
bold, Germany) following Junglee et al., (2014). Results of cover crop
biomass and nutrient analysis are presented in supplementary tables
(Table S4).

2.4.2. Sweet corn leaf

Four leaf tissue samples were randomly collected per AMF treated
sweet corn plant about 65 days after seeding. Leaves were taken from
the 5th node from the top, where no ear was present on July 28, 2021,
and August 2nd, 2022. Samples were dried in a forced-air oven at 60 °C
for one week, ground, and analyzed for mineral nutrients at PSU AASL,
following methods described in Section 2.4.1.

2.4.3. Soil

For bulk density analysis, undisturbed soil cores were collected per
plot from 0 to 10 cm and 10-20 cm with a JMC soil bulk density probe
(15.5 cm high and 5.1 cm internal diameter cylinder; JMC Soil Samplers,
Newton, IA). The soil cores were dried at 105 °C in an oven to determine
the dry mass and calculate the soil bulk density (BD). Total soil porosity
(®) was calculated as [1 — (bulk density/particle density (assumed to be
2.65gcm™3)]). For chemical analysis, composite of 10 cores of soil
samples were collected using a 2.5 cm diameter soil probe from the top
20 cm soil depth in a ‘W’ pattern per plot, avoiding edges and tractor
wheel tracks. The soil samples were spread on trays laid with wax paper
and air-dried. The dry soil samples were sieved through a 2-mm sieve,
subsampled, and analyzed for mineral nutrients using Mehlich-3 soil test
extractant method, pH water extractant method (1:2), and total C and N
using combustion method at PSU AASL. Soil pH was measured in water
according to Eckert and Sims, 1995. Extractable P, K, Ca, and Mg were
measured by Melich III (ICP) according to Wolf and Beegle (2011). Soil
organic matter was measured via loss on ignition according to Schulte
and Hoskins (1995). Total C was measured via combustion as stated in
Nelson and Sommers, 1982). Total N was determined via combustion as
stated in Bremner (1996). Finally, Zn, Cu, and S were measured using
EPA Method 3050B/3051 + 6010 (EPA, 1986). Results of soil chemical
and physical and analyses are included in supplementary tables
(Tables S2, and S3).
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2.4.4. Sweet corn ear and whole plant

Sweet corn ears from the centermost plot rows were hand-harvested
for each mycorrhizal treatment to determine yield (unhusked fresh ear
weight per hectare). At harvest, ten whole plants per treatment were
collected, and stalks were separated from unhusked ears, weighed fresh,
and dried in a forced-air oven. The harvest index (HI) was calculated as
the ratio of dry unhusked ear weight to stalk weight. Fresh kernels were
removed from the ears, frozen at —20 °C, then freeze-dried, ground, and
subsampled. Subsamples were analyzed for mineral nutrients using the
acid digestion hot block method at PSU AASL, and total C and N were
determined via dry combustion (Elementar Vario Max N/C Analyzer,
Elementar Inc.). Amino acid profiling was conducted at the University of
Missouri Agricultural Experiment Station Chemical Laboratories (St.
Louis, MO) following AOAC Official Method 982.30 (AOAC, 2024),
while crude protein was analyzed using the Kjeldahl method, with
values expressed as N x 6.25 (AOAC, 2024). Additionally, sweet corn
kernels were analyzed for vitamins B6 and C at Eurofins Lancaster
Laboratories (Lancaster, PA).

2.5. Determination of AMF colonization

At harvest, fresh sweet corn roots were gently collected, washed with
water, and 0.5 g of fresh roots were soaked in 10 % potassium hydroxide
(KOH) solution at room temperature for four days to remove root cell
contents. The cleared roots were rinsed in tap water (2 times), acidified
in 1% hydrochloric acid (HCI) for 3 min, and then stained with 0.5 %
trypan blue solution (Phillips and Hayman, 1970). The AMF root colo-
nization was measured using the gridline intercept method (Giovannetti
and Mosse, 1980) under a compound microscope (20-50 X magnifica-
tion). The root colonization percentage was determined as follows:

Percentage of Root Colonization
Number of colonized roots

= 1
Total number of roots (colonized + uncolonized) x 100

2.6. Statistical analysis

All data were analyzed using SAS (Version 9.4, 2013), except for
Pearson correlation analysis, which was performed in R (ggcorrplot
package, Version 4.4.2, 2024). Analysis of variance (ANOVA) was con-
ducted for all response variables using the PROC GLIMMIX procedure,
with block and year treated as random factors and all other factors as
fixed. Data were checked for normality and homoscedasticity using
Bartlett’s test and the univariate procedure. Variables such as cover crop
biomass, leaf mineral nutrients, kernel mineral nutrients, amino acids,
and vitamins were log-transformed to satisfy ANOVA assumptions, and
means were back-transformed for presentation in tables and figures.
Post-hoc analyses were conducted using Fisher’s LSD (p < 0.05), and
multiple comparisons between treatments were evaluated using Tukey-
Kramer adjusted P-values (p < 0.05).

3. Results
3.1. Leaf tissue nutrient concentration

Sweet corn leaf mineral concentrations of N, Ca, Mg, S, Mn, Fe, Cu,
and B were significantly affected by tillage, with higher concentrations
observed in FT compared to RT (Table 1). In contrast, P concentration
was significantly greater in RT than in FT, while K and Zn concentrations
in leaf tissue were not influenced by tillage. Among the AMF treatments,
inoculation with the NAT mixed species significantly increased Fe con-
centrations in sweet corn leaves (Table 1). However, no significant in-
teractions between tillage and AMF inoculation were detected for any of
the assessed leaf mineral concentrations.

Macro-nutrient concentrations in sweet corn leaf tissue, assessed at
the ear leaf stage, were within the critical sufficiency ranges for N, P, K,
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Table 1
Mean leaf mineral concentrations of sweet corn as affected by tillage and AMF inoculation.
Source of variation N P K Ca Mg S Mn Fe Cu Zn B
8 mg kg !
kg~!
Tillage (T)
RT! 24.64 4.85 20.99 5.41 2.20 1.86 22.80 89.51 + 4.61° 7.83 10.36 4.19
+0.64"  +0.09° +068 +0.11° +0.10° +0.05°  +1.09° +0.33° +0.34 +0.15°
FTS 30.63 4.32 19.61 6.49 2.88 2.23 26.98 117.91 11.61 11.11 4.85
+0.76% +0.08° + 0.64 +0.13% +0.13% +0.06% +1.26% +5.84° +0.47° + 0.36 +0.16°
AMF
Inoculation
Mock 27.91 4.57 19.88 591 £0.12 2.52 + 0.09 2.02 24.55 + 0.97 101 + 4.31° 9.54 £ 0.33 10.68 4.65
+ 0.61 + 0.09 +0.55 + 0.04 + 0.30 +0.19
NAT (mixedspp.)i 28.05 4.44 20.32 5.99 + 2.51 £ 0.09 2.03 25.62 + 110 + 4.54* 9.57 £0.33 10.83 4.41
+ 0.61 + 0.09 + 0.55 0.12 + 0.05 1.00 + 0.30 +0.18
F. mosseae 26.71 4.72 20.23 5.86 £0.12 2.57 £0.09 2.04 24.04 + 0.96 99 + 4.27° 9.40 £0.33 10.59 4.72
+ 0.60 + 0.09 + 0.55 + 0.05 + 0.30 +0.19
R. irregularis 27.26 4.59 20.73 5.93 £0.12 2.49 £ 0.09 2.06 25.02 + 0.99 101 + 4.36° 9.62 +£0.34 10.80 4.26
+ 0.61 + 0.09 + 0.56 + 0.05 +0.31 +0.18
Significance
T < 0.0001 0.0012 ns < 0.0001 0.0008 0.0002 0.025 0.002 < 0.0001 ns 0.011
AMF ns ns ns ns ns ns ns 0.034 ns ns ns
T x AMF ns ns ns ns ns ns ns ns ns ns ns

fRT: reduced tillage where soil was chisel plowed and prepared for seeding the cover crop mixture hairy vetch (34 kg ha™1) and cereal rye (101 kg ha™1) in the fall and
then roll-crimped at anthesis prior to transplanting sweet corn seedlings in spring.

YFT: soil was plowed with moldboard plow and prepared for seeding the cover crop mixture in the fall and similarly prior to transplanting sweet corn seedlings in the
spring.

INAT: natural source of mycorrhizal fungi sourced from organic soils in the Vegetable Systems Trial at Rodale Institute.

'Analysis was performed on transformed data and untransformed data are reported. Means + SE within column per tillage and mycorrhizal species followed by the
same letter are not significantly different (p < 0.05) by Tukey-Kramer adjusted LSD. ns: nonsignificant at p < 0.05, based on F test. N = 32 when sample was grouped
based on tillage, and N = 16 when sample was grouped based on AMF treatment.

Ca, Mg, and S (28, 2.5, 18.0, 3.0, 2.5, and 2.0 g kg™, respectively). Mn 3.2. Sweet corn yield, ear dry weight, stalk dry weight, harvest index,

levels (25 mg kg™) were also within the sufficiency range, while Zn and
B were below the critical thresholds (20 mgkg™' and 6 mgkg™,
respectively). Fe concentrations were approximately twice the suffi-
ciency level (60 mg kg™), while Cu levels were 1.3 times higher than the
critical value (6 mg kg™).

crude protein, vitamin B6 and Vitamin C

Fresh sweet corn yield was significantly influenced by tillage, with
higher yields observed in FT compared to RT (p = 0.0004; Table 2).
Similarly, unhusked ear dry weight was significantly greater in FT than

in RT (p = 0.004). In contrast, vitamin C concentration in sweet corn

Table 2
Sweet corn fresh yield, stalk dry weight, and harvest index (HI) as affected by tillage practices and AMF inoculation treatments.

Source of variation Yield Unhusked ear dry weight Stalk dry HI Crude Vitamin B6 Vitamin C

(Mg ha™ ) (Mg ha™ ") weight (%) protein (mg 100 gfl) (mg 100 gfl)
(Mgha™") (%)

Tillage (T)

RT' 15.00 + 2.44 +0.13° 5.10 + 47.45 + 13.73 + 0.59 + 24.55 +
0.47" 0.78 6.52 0.41 0.016 2.48%

FTS 18.27 + 3.15+0.16* 7.52 + 43.11 + 13.88 + 0.62 + 17.69 +
0.53% 1.12 6.00 0.42 0.016 1.84°

AMF Inoculation

Mock 16.57 + 2.82 +0.14% 6.06 + 47.97 + 13.79 + 0.60 + 21.66 +
0.51 0.68 4.92 0.33 0.013% 1.77%®

NAT (mixed spp.)t 16.93 + 2.95 + 0.14* 7.00 £ 42,42 + 13.58 £ 0.58 + 18.92 +
0.51 0.77 4.43 0.32 0.012° 1.61°

F. mosseae 16.30 + 2.54 +0.13" 5.78 + 4417 + 13.97 + 0.61 + 20.21 +
0.51 0.65 4.57 0.33 0.012% 1.69%°

R. irregularis 16.34 + 2.82 +0.14% 6.02 + 46.53 + 13.87 + 0.61 + 22.83 +
0.51 0.67 4.79 0.33 0.012% 1.89°%

Significance

T 0.0004 0.004 ns ns ns ns 0.040

AMF ns 0.050 ns ns ns 0.013 0.049

T x AMF ns ns ns ns ns 0.024 0.006

'RT: reduced tillage where soil was chisel plowed and prepared for seeding the cover crop mixture hairy vetch (34 kg ha!);and cereal rye (101 kg ha™!) in the fall and
then roll-crimped at anthesis prior to transplanting sweet corn seedlings in spring.

SFT: soil was plowed with moldboard plow and prepared for seeding the cover crop mixture in the fall and similarly. prior to transplanting sweet corn seedlings in the
spring.

INAT: natural source of mycorrhizal fungi sourced from organic soils in the Vegetable Systems Trial at Rodale Institute.

'Analysis was performed on transformed data and untransformed data are reported. Means + SE within column per tillage and mycorrhizal species followed by the
same letter are not significantly different (p < 0.05) by Tukey-Kramer adjusted LSD. ns: nonsignificant at p < 0.05, based on F test. N = 32 when sample was grouped
based on tillage, and N = 16 when sample was grouped based on AMF treatment.
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kernels was significantly affected by tillage, with higher levels in RT
than in FT (p = 0.040). Stalk dry weight, harvest index (HI), and crude
protein content were not significantly impacted by tillage (p < 0.05).
Among the AMF treatments, R. irregularis inoculation enhanced
unhusked ear dry weight compared to F. mosseae. Additionally, both
single AMF inoculants (R. irregularis and F. mosseae) significantly
increased vitamin B6 and C concentrations compared to NAT (p = 0.013
and p = 0.049, respectively; Table 2). A significant interaction between
tillage and AMF inoculation was observed for vitamin B6 and C con-
centrations (Fig 1A and B). Specifically, sweet corn plants inoculated
with R. irregularis and grown in FT plots exhibited higher vitamin B6
levels than those in RT plots. Conversely, for the same AMF species,
vitamin C concentrations were greater in RT-grown sweet corn kernels
than in FT.

3.3. Kernel mineral nutrient concentration

The concentrations of K, Ca, Mg, Mn, Zn, and B in sweet corn kernels
were influenced by tillage, with higher levels observed in RT compared
to FT (Table 3). Inoculation with R. irregularis significantly increased P,
K, and Zn concentrations in the kernels (p = 0.0117, p = 0.0170, and
p = 0.0109, respectively) compared to the mock, NAT, and F. mosseae
treatments but led to a reduction in B concentration (p = 0.0001;
Table 3). No significant interactions between tillage and mycorrhizal
inoculation were detected for most mineral nutrients in sweet corn
kernels, except for B. Specifically, B levels were significantly higher in
kernels from R. irregularis-inoculated plants grown in RT plots compared
to those in FT (p = 0.0308; Table 3, Fig. 2).

3.4. Essential amino acids

Leucine was the most abundant essential amino acid in sweet corn
kernels, followed in descending order by valine, lysine, phenylalanine,
isoleucine, threonine, methionine, histidine, and tryptophan (Table 4).
Tillage significantly influenced leucine and phenylalanine concentra-
tions (p =0.0036 and p = 0.0481, respectively), with higher levels
observed in FT plots. Additionally, tillage led to a significant reduction
in tryptophan concentration (p = 0.0053; Table 4). However, AMF
inoculation and its interaction with tillage had no significant effects on
essential amino acid concentrations in sweet corn kernels.

3.5. Non-essential amino acids

Glutamic acid was the most abundant non-essential amino acid in
sweet corn kernels, followed by alanine, aspartic acid, proline, serine,
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arginine, glycine, tyrosine, taurine, and hydroxylamine (Table 5).
Among these, only proline concentration was influenced by tillage, with
higher levels observed in FT compared to RT. Inoculation with
R. irregularis and F. mosseae significantly increased aspartic acid and
glycine concentrations compared to the mock and NAT treatments
(p = 0.0022 and p = 0.0251, respectively; Table 5). No significant in-
teractions between tillage and AMF inoculation were detected for non-
essential amino acids in sweet corn kernels.

3.6. Root colonization

AMF root colonization was slightly higher in RT plots (58.94 %
+ 4.95 %) compared to FT plots (55.96 % + 4.73 %), though the dif-
ference was not statistically significant (Table 6). Despite the lack of
significant variation in overall AMF colonization, sweet corn plants
inoculated with R. irregularis exhibited greater root colonization than
those inoculated with F. mosseae, NAT, or the mock treatment. No sig-
nificant interactions between tillage and AMF inoculation were
observed for root colonization in sweet corn roots.

3.7. Relationship between root colonization and nutrients

There was no observed correlation between AMF root colonization
and sweet corn yield, crude protein, Mg, Zn, P, N, and S levels (Fig. 3).
However, AMF root colonization showed a strong positive correlation
with vitamin B6 and K levels in sweet corn kernels, a moderate positive
correlation with vitamin C, Mn, Fe, and Cu, and a negative correlation
with B. Sweet corn yield was negatively associated with K, vitamin C,
Cu, Ca, Mn, Mg, and Zn levels (Fig. 3). Crude protein content exhibited a
positive correlation with N, P, S, Fe, Cu, vitamin C, vitamin B6, and Zn,
along with a slight positive correlation with K, Ca, Mg, and Mn (Fig. 3).
Vitamin B6 was positively correlated only with N but showed a negative
correlation with B concentration in sweet corn kernels. In contrast,
vitamin C demonstrated a positive correlation with all macro- and
micronutrients.

4. Discussion

Soil microorganisms dynamically control the crop productivity by
regulating nutrient mineralization and solubilization and cycling
(Bender et al., 2016), particularly AMF, which can form a symbiotic
relationships with plants to enhance plant growth and nutrient uptake
(Herrmann and Lesueur, 2013). While many studies have investigated
AMF effects on plant growth, most were conducted in controlled
greenhouse environments, often neglecting species-specific AMF
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Fig. 1. Mean vitamin B6 concentration (A) and vitamin C concentration in sweet corn kernel (B) as affected by tillage and AMF inoculation. Data were transformed
and untransformed means are reported + standard errors (SE). Different letters above bars indicated significant differences between treatments (p < 0.05) by Tukey-

Kramer adjusted LSD. N = 8.
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Table 3
Sweet corn kernel mineral concentrations as affected by tillage, and AMF inoculation treatments.
Source of N P K Ca Mg S Mn Fe Cu Zn B
variation
gkg ! mg kg !

Tillage (T)

RT" 21.07  4.29 11.80 0.14 1.30 1.73 9.05 14.20 3.28 24.46 5.66
+0.67 +0.07 +0.30% +0.0° +0.03° +0.04 +0.54° +0.71 +0.27 +0.73° +0.21%

FTS 21.23 420 10.81 0.09 1.17 1.67 6.96 13.96 2.60 20.87 4.85
+0.68 +0.07 +0.28° + 0.00° +0.03° +0.04 +0.43° +0.70 0.21 +0.64° +0.20°

Mycorrhizal

Inoculation
(AMF)

Mock 21.10  4.23 11.32 0.11 1.24 1.69 7.74 14.21 2.89 22.27 6.20
+0.52 +0.06° +0.26° +0.01 +0.03 +0.03 + 040 +0.60 +0.20 +0.56° +0.25%

NAT (mixed spp.)* 20.68  4.17 11.03 0.11 1.20 1.67 7.87 13.59 2.85 22.04 5.23
+0.51  +0.06° +0.26° +0.01 +0.03 +0.03 +0.40 +0.59 +0.20 +0.59° +0.24°

F. mosseae 21.30  4.21 11.03 0.12 1.22 1.70 7.87 13.85 2.89 22.51 5.13
+0.53 +0.06" +0.26° +0.01 +0.03 +0.03 +0.40 +0.59 +0.20 +0.56° +0.24

R. irregularis 21.43 436 11.81 0.13 1.28 1.73 8.29 + 14.68 + 2.98 23.61 4.54
+0.53  +0.06% +0.27° +0.01 +0.04 +0.03 0.41 0.61 +0.20 + 0.58° +0.25°

Significance

T ns ns 0.0307 0.0028 0.0132 ns 0.0088 ns ns 0.0023 0.0133

AMF ns 0.0117 0.0170 ns ns ns ns ns ns 0.0109 0.0001

T x AMF ns ns ns ns ns ns ns ns ns ns 0.0308

RT: reduced tillage where soil was chisel plowed and prepared for seeding the cover crop mixture hairy vetch (34 kg ha™') and cereal rye (101 kg ha™!) in the fall and

then roll-crimped at anthesis prior to transplanting sweet corn seedlings in spring.

§FT: soil was plowed with moldboard plow and prepared for seeding the cover crop mixture in the fall and similarly prior to transplanting sweet corn seedlings in the

spring.

iNAT: natural source of mycorrhizal fungi sourced from organic soils in the Vegetable Systems Trial at Rodale Institute.
!Analysis was performed on transformed data and untransformed data are reported. Means + SE within column per tillage and mycorrhizal species followed by the
same letter are not significantly different (p < 0.05) by Tukey-Kramer adjusted LSD. ns: nonsignificant at p < 0.05, based on F test. N = 32 when sample was grouped

based on tillage, and N = 16 when sample was grouped based on AMF treatment.
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Fig. 2. Mean B concentration in sweet corn kernel as affected by tillage and AMF inoculation. Data were transformed and untransformed means are reported
+ standard errors (SE). Different letters above bars indicated significant differences between treatments (p < 0.05) by Tukey-Kramer adjusted LSD. N = 8.

interactions and competition with native soil microbiota (Berruti et al.,
2016).

In this study, sweet corn plants were pre-inoculated in the green-
house with AMF treatments, including NAT, F. mosseae, and
R. irregularis, before being transplanted into the field to assess their
nutrient uptake efficiency. Despite the presence of indigenous AMF, as
indicated by root colonization in the mock treatment (Table 6), these
plants continued to absorb nutrients effectively (Tables 3-5) but differ-
entially. These aligns with the findings of Dias et al., (2018), who
demonstrated that maize could be successfully inoculated with

F. mosseae and R. irregularis even in the presence of a native AMF
community.

Arbuscular mycorrhizal fungi extends the functional root zone via
hyphal networks, facilitating the uptake of essential nutrients such as P,
Zn, Cu, which are typically immobile in soil (Huey et al., 2020). This
study observed that F. mosseae and R. irregularis positively influenced
nutrient uptake in sweet corn, even under high P conditions. These
findings align with previous studies indicating AMF can enhance P ef-
ficiency and recruit phosphate-solubilizing bacteria to improve P
availability in P-rich soils (Bravo et al., 2006). However, elevated soil P
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Table 5
Sweet corn kernel non-essential amino acids concentrations as affected by interactions of year by tillage and year by mycorrhizal fungi inoculum.
Source of variation Ala*t  Arg Asp Cys Glu Gly Hydr Pro Ser Tau Tyr
%

Tillage (T)

RT* 1.39 0.51 1.10 0.23 2.31 0.52 0.13 0.82 0.62 0.24 0.34 +
+ 0.05 +0.01 + 0.05 + 0.01 +0.10 + 0.01 =+ 0.02 +0.02° =+ 0.02 + 0.02 0.01

FTS 1.34 0.51 1.00 0.24 2.51 0.51 0.09 0.90 0.60 0.25 0.35
+ 0.05 + 0.01 + 0.04 +0.01 +0.11 +0.01 + 0.01 +0.02° + 0.02 +0.02 +0.01

Mycorrhizal Inoculation

(AMF)

Mock 1.36 0.50 1.02 0.24 2.40 0.51 0.11 0.85 0.61 0.24 0.34
+ 0.04 + 0.01 +0.03% +0.01 + 0.08 +0.01% + 0.01 + 0.02 + 0.02 + 0.02 +0.01

NAT (mixed spp)1 1.32 0.51 1.01 0.23 2.36 0.50 0.10 0.86 0.60 0.25 0.34
+ 0.04 + 0.01 +0.03¢ +0.01 + 0.08 +0.01¢ + 0.01 + 0.02 + 0.02 +0.02 +0.01

F. mosseae 1.38 0.52 1.07 0.24 2.44 0.53 0.11 0.87 0.61 0.24 0.34
+ 0.04 + 0.01 +0.03%? +0.01 + 0.09 +0.01? + 0.01 + 0.02 + 0.02 + 0.02 +0.01

R. irregularis 1.39 0.52 1.09 0.23 2.45 0.53 0.11 0.86 0.62 0.24 0.35
+ 0.04 + 0.01 +0.03% +0.01 + 0.09 +0.01%° + 0.01 + 0.02 + 0.02 +0.02 +0.01

Significance

T ns ns ns ns ns ns ns 0.0217 ns ns ns

AMF ns ns 0.0022 ns ns 0.0251 ns ns ns ns ns

T x AMF ns ns ns ns ns ns ns ns ns ns ns

RT: reduced tillage where soil was chisel plowed and prepared for seeding the cover crop mixture hairy vetch (34 kg ha~') and cereal rye (101 kg ha™?) in the fall and
then roll-crimped at anthesis prior to transplanting sweet corn seedlings in spring.

SFT: soil was plowed with moldboard plow and prepared for seeding the cover crop mixture in the fall and similarly prior to transplanting sweet corn seedlings in the

spring.

iNAT: natural source of mycorrhizal fungi sourced from organic soils in the Vegetable Systems Trial at Rodale Institute.
**Ala =alanine, Arg =arginine, Asp = aspartic acid, Cys =cysteine, Glu =glutamic acid, Gly =glycine, Hydr =hydrxyoalanine, Pro =proline, Ser =serine, Tau

—taurine, and Tyr =tyrosine.

'Analysis was performed on transformed data and untransformed data are reported. Means + SE within column per tillage and mycorrhizal species followed by the
same letter are not significantly different (p < 0.05) by Tukey-Kramer adjusted LSD. ns: nonsignificant at p < 0.05, based on F test. N = 32 when sample was grouped

based on tillage, and N = 16 when sample was grouped based on AMF treatment.

B, which restricts its mobility to the host plant. (Pommerrenig et al.,
2019).

The increased concentration of aspartic acid and glycine in sweet
corn inoculated with F. mosseae and R. irregularis (Table 5) align with the
findings of Whiteside et al. (2012), who reported that AMF enhance the
uptake of amino acids, particularly highly hydrophilic and neutrally
charged amino acids like glycine. Aspartic acid and glycine contribute to
various physiological functions, including energy production, neuro-
transmission, muscle function, and immune system support (Raiteri,
2024). Similar increases in amino acid concentrations following AMF
inoculation have been observed in other studies, such as Rivero et al.
(2015) and Salvioli et al. (2012), which reported elevated glutamic acid
and asparagine levels in crops like tomatoes and common bugloss
inoculated with R. irregularis.

Plants have developed various mechanisms to accumulate proteins
and metabolites in response to abiotic stress. A stress response is the
increased production of reactive oxygen species (ROS). To counteract
these stresses, plants also accumulate low molecular weight solutes -
highly soluble non-toxic organic compounds that provide cellular pro-
tection. These solutes include proline, sucrose, and glycine betaine.
Proline, in particular, is known to accumulate under abiotic stress con-
ditions such as heat, drought, and prolonged sunlight exposure (Furlan
et al., 2020). As a proteinogenic amino acid, proline functions as a ROS
scavenger under a variety of stress conditions (Hayat et al., 2012). In this
study, sweet corn kernels from plants grown in FT plots exhibited higher
proline levels than those from RT plots (Table 5). Shinde and Singh,
(2017) similarly reported increased proline concentrations in sweet corn
under water deficit stress. The elevated proline levels in FT-grown sweet
corn kernels may be attributed to drier conditions in these plots during
July and August 2022 (Supplementary Figure S1), which resulted from
faster water evaporation and plant growth. These dry conditions likely
induced stress, particularly during the tasseling, ear formation, and
maturation stages. In contrast, residue retention in RT plots helped

mitigate soil moisture loss and reduced stress (Wagger and Mengel,
1988).

Aspartic acid plays a critical role in the biosynthesis of various
essential metabolites, including arginine, glutamate, and aromatic
amino acids such as tyrosine and phenylalanine, which are vital for plant
defense against abiotic stress (Ji et al., 2023). Consequently, the
observed increase in phenylalanine levels in sweet corn kernels may be
attributed to plant defense mechanisms activated by intensive tillage (FT
plots) combined with drought stress (Supplementary Figure S1). The
positive correlation between N, S, and crude protein could further
explain the greater accumulation of S-containing amino acids such as
phenylalanine (Fig. 3). In this study, glycine, and aspartic acid, two
soluble amino acids known for their role in ROS scavenging (Ji et al.,
2023) - increased in sweet corn kernels inoculated with AMF species
F. mosseae and R. irregularis.

AMF are typically concentrated in the upper root zone, where their
hyphal networks can be disrupted by plowing (Kabir, 2005b; Helgason
et al., 1998; Schnoor et al., 2011). However, despite potential
tillage-induced disruptions, AMF colonization in sweet corn roots
remained similar between treatments, averaging 59 % and 56 % in FT
and RT, respectively (Table 6). Given this, the increased accumulation of
glycine and aspartic acid in FT plots may be influenced by stress re-
sponses triggered by intensive tillage, which can alter root exudation
patterns, nutrient availability, and microbial interactions.
Tillage-induced soil disturbances often increase oxidative stress,
potentially leading to the upregulation of amino acids involved in ROS
scavenging. Additionally, changes in AMF community composi-
tion—rather than overall colonization rates—could have played a role in
influencing plant amino acid metabolism. Our findings align with those
of Metwally et al., (2021) who noted increased levels of glycine and
arginine in AMF-inoculated onion and Rivero et al. (2015) with tomato.
Further studies evaluating AMF community shifts and amino acid
metabolism under different tillage regimes would provide deeper
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Sweet corn percent root colonization by arbuscular mycorrhizal fungi (AMF) as affected by year, tillage, and interactions of year, tillage, and AMF inoculation.

Source of variation

%

Arbuscular mycorrhizal fungi (AMF) root colonization

Tillage (T)

RT! 56 + 5'
FTS 59+5
Mycorrhizal Inoculation (AMF)'

Mock 59 + 4
NAT (mixed spp.)* 57 +4
F. mosseae 5414
R. irregularis 60 + 4
Significance

T ns

M ns
TxM ns

NS, *, * *, * ** nonsignificant or significant at P < 0.05, 0.01, or 0.001, respectively, based on F test.
RT: reduced tillage where soil was chisel plowed and prepared for seeding the cover crop mixture
Hairy vetch (34 kg ha™') and cereal rye (101 kg ha™') in the fall and then roll-crimped at anthesis
prior to transplanting sweet corn seedlings in spring.

SET: soil was plowed with moldboard plow and prepared for seeding the cover crop mixture in

the fall and similarly prior to transplanting sweet corn seedlings in the spring.

INAT: natural source of mycorrhizal fungi sourced from organic soils in the Vegetable Systems
Trial at Rodale Institute.

'Analysis was performed on transformed data and untransformed Means + SE are reported.

ns: nonsignificant at p < 0.05, based on F test. N = 32 when sample was grouped based on tillage,
and N = 16 when sample was grouped based on AMF treatment. N = 32 when sample was grouped
based on tillage, and N = 16 when sample was grouped based on AMF treatment.

insights into these interactions.

Overall, this study demonstrates that reduced tillage enhances the
accumulation of K, Ca, Mg, Mn, Zn, and B in sweet corn kernels, sup-
porting the hypothesis that AMF can improve the nutritional quality of
sweet corn, with potential benefits for human health. These findings
reinforce the role of beneficial soil microbes, such as AMF, in enhancing
crop nutrient content—a critical consideration given global soil nutrient
depletion and declining crop nutrient density (Bamji et al., 2021; Vance,
2001). By fostering AMF associations, regenerative organic practices,
including reduced tillage, can increase the nutritional value of crops,
helping to address “hidden hunger” in nutrient-deficient diets
(Drewnowski, 2020). This effect was also observed in greenhouse
studies in microgreens by Kathi et al. (2022), who linked K increases to
improved vitamin C levels, which is essential for human health (Linster
and Van Schaftingen, 2007).

Additionally, this study’s findings of elevated essential amino acids
under AMF inoculation align with the established role of AMF in pro-
moting nitrogen-rich root exudates, which enhance protein and amino
acid synthesis (Prem Kumari and Srimeena, 2019). The influence of AMF
on crop quality extends beyond basic nutrient content, as amino acids
such as glutamic and aspartic acid, which contribute to the sweet flavor
of corn, were also affected by AMF associations (Li et al., 2022).

Despite these positive effects, no significant differences in yield or
nutrient concentrations (except for P, K, Zn, and B) were observed be-
tween AMF treatments. This could be due to several factors inherent to
field conditions and existing soil nutrient levels. AMF typically exhibit
the most pronounced effects under phosphorus-limited conditions,
where their symbiotic relationship enhances nutrient acquisition.
However, in P-rich soils, plants may rely less on AMF, reducing their
observable impact on yield and nutrient uptake. Additionally, in field
conditions, natural colonization by indigenous AMF communities may
have resulted in a baseline level of colonization across all treatments,
minimizing differences between inoculated and mock treatments. This
widespread colonization likely contributed to a uniform effect on
nutrient uptake and yield, as native AMF present in the soil may have
provided similar functional benefits. Unlike controlled greenhouse or
laboratory settings, field environments introduce variability that can
obscure differences between AMF-inoculated and mock treatments in
terms of their influence on yield, protein content, and amino acid

concentrations. These findings highlight the complexity of AMF in-
teractions in real-world agricultural settings, emphasizing the need to
consider environmental factors and existing soil microbial communities
when evaluating the benefits of AMF inoculation on crop performance.

5. Conclusion

This two-year study examined the effects of tillage practices and AMF
inoculation on crop yield and nutrient uptake in sweet corn. While the
presence of native AMF complicated the assessment of supplemental
inoculation, the results suggest that AMF biofertilizers can contribute to
enhancing specific nutrient density in sweet corn across different tillage
systems, which may have implications for nutritional quality. Specific
AMF inoculations with F. mosseae and R. irregularis were associated with
increased levels of K and vitamins B6 and C in sweet corn kernels.
However, their overall impact on yield and other nutrient concentra-
tions was less pronounced, likely due to high baseline phosphorus levels
and natural AMF colonization across treatments. The findings suggest
that native AMF populations contributed to baseline colonization even
in mock treatments, potentially reducing differences between AMEF-
inoculated and non-inoculated plants under field conditions. Addition-
ally, the interaction between tillage practices and AMF inoculation
emphasized the potential of reduced tillage systems to support AMF-
driven nutrient enhancements in phosphorus-rich soils, aligning with
agricultural practices that prioritize soil health. This study provides
evidence that AMF inoculation can influence crop nutritional quality,
though its effectiveness may depend on field conditions, existing soil
nutrient levels, and native microbial communities. Future research
should further investigate AMF applications in nutrient-deficient soils
and assess their long-term impacts on soil and crop health. Additionally,
further research on developing large-scale AMF inoculants that can
establish effectively alongside native AMF populations may improve the
efficacy of AMF-based biofertilization in sustainable crop production.
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